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The motion of bubbles in a vertical 
temperature gradient 

By N. 0. YOUNG,* J. S. GOLDSTEIN,? AND M. J. BLOCKS 
Baird-Atomic, Inc., Cambridge, Massachusetts 

(Received 9 October 1958 and in revised form 30 January 1959) 

It has been observed experimentally that small bubbles in pure liquids can be 
held stationary or driven downwards by means of a sufficiently strong negative 
temperature gradient in the vertical direction. This effect is demonstrated to be 
due to  the stresses resulting from the thermal variation of surface tension at the 
bubble surface. The flow field within and around the bubble is derived, and an 
expression for the magnitude of the temperature gradient required to hold the 
bubble stationary is obtained. This expression is verified experimentally. 

1. Introduction 
It has long been known that when variations in temperature are maintained on 

the free surface of a pure liquid a dynamic steady state is achieved, characterized 
by a bulk flow in the liquid and at the surface, together with small surface deforma- 
tions (Hershey 1939). The nature of this flow is as follows. A local increase in 
temperature results in a local decrease in surface free energy, y ; a surface tempera- 
ture distribution therefore is accompanied by a non-uniform tangential stress in 
the surface, the positive direction of which is opposite to the surface temperature 
gradient. In  response to this stress occurs a flow, the details of which are deter- 
mined by a balance between the viscous shearing stress at the surface and the 
thermally induced surface stress. It is of interest to contrast the behaviour of a 
liquid subjected to a surface temperature variation with that of an elastic mem- 
brane subjected to the same thermal variation. Because the membrane is elastic, 
it may deform in its own plane until the tension is uniform throughout; the steady 
state in this case is therefore static, while in the case of the liquid a dynamic steady 
state is reached. 

The situation in the liquid is entirely different if the surface is contaminated by 
an insoluble monolayer. Such monolayers can indeed support tangential stress 
without steady state flow by means of local density variations (Harkins 1952). 
This fact has been used as a very sensitive test for distinguishing between surface- 
tension induced flows, and flows due to other causes, e.g. free convection (Block 
1956). 

The direction of the flow in the surface is in the direction of the tangential stress 
vector. The direction of the surface flow is therefore away from the warmer 
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regions, with liquid flowing to the surface from the bulk at  the warm regions. 
Since the velocity does not vanish at the surface, a pressure variation is present 
at the surface. This variation in normal stress is balanced by a surface deforma- 
tion; the excess normal stress necessary to balance the flow pressure is provided by 
the pressure due to surface curvature. Qualitatively, a depression in the surface 
is formed at a local hot spot, as has been shown by Hershey (1939). 

In the course of a series of experiments on this phenomenon (other results of 
which will be published later), we have investigated the effect of temperature 
variations on a spherical free surface, e.g. that of a free bubble or droplet. 
According to the above argument, if the temperature increases monotonically 
from one pole to the other of a bubble surface, a flow must be produced if the 
liquid is uncontaminated. In  the linear approximation to be described below, this 
flow is to be added to the normal Stokesian flow surrounding a freely rising bubble, 
so that the net effect must be to alter the motion of the bubble; this conclusion is, 
however, independent of whether the linear approximation is made. 

It is easy to see in what direction the motion of the bubble will be altered. The 
capillary-type flow at the bubble surface, with respect to the bubble centre, is 
from the warmer to the cooler pole; with respect to the liquid bulk, therefore, the 
bubble will move in the direction of its warmer pole. Bubbles ought therefore to 
be ‘attracted’ by hot objects. This is easily demonstrated to be the case for small 
bubbles by touching a hot soldering iron to a test-tube containing any very clean 
liquid which has been shaken up to contain air bubbles. 

2. Experiments and results 
In  order to avoid the effects of changing bubble solubility with temperature, 

the experiments were restricted to the determination of the relationship between 
the bubble radius and the (negative) vertical temperature gradient necessary to 
keep the bubble motionless with respect to the liquid at  large distances. From 
dimensional analysis, this relationship may be expected to have the form 

d T / d z  = (K/y’)(p-p’)gRF( ...), (1)  

where dTldz  is the temperature gradient, K is a numerical constant, R is the 
bubble radius, y’ is the temperature coefficient of surface tension, p and p‘ are the 
densities outside and inside the bubble, and g is the acceleration of gravity. The 
function P(. . ,) is any function of dimensionless quantities, e.g. (p/p) (SIP)+, etc. 
The purpose of the experiment was to verify equation (1) and t o  determine the 
values of K and the function F. 

The experiment was carried out by observing bubbles in a cylindrical sample 
of liquid carried in the gap between the anvils of a machinist’s micrometer. The 
temperatures of the anvils were measured by means of mercury thermometers 
thrust into copper blocks borne by the anvils. The temperature of the lower block 
could be raised by increasing the current through a nichrome wire wrapped 
around the lower copper block. Measurements were confined to the region near 
the vertical axis of the liquid sample in order to minimize any effects associated 
with the free cylindrical surface. Bubble diameters were measured with a 
travelling microscope. The experimental arrangement is illustrated in figure 1. 
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In  the experiment, small bubbles were found to collect at the lower (warmer) 
anvil. As the temperature gradient was slowly reduced, the larger of these were 
observed to detach and to rise slowly. A second adjustment of temperature 
gradient then made it possible to poise the bubble essentially motionless midway 
between the anvils. Measurements were made on all bubbles, the residual velocity 
being held by this means within the limits of 5 lOpU/s. These bubbles were very 
nearly spherical in shape. 

Hg thermometers 

D- Micrometer 

FIGURE 1. Schematic representation of experimental arrangement. 

Y'* 
dyne h x  lo4 
cm-l a x  lo3 cal/cm c ,  

Fluid P p x  lo2 y "C-l deg-l deg sec (cal/g) 
n -hexadecane 0.773 3.52 27.66 -0.106 0.805 3.5 0.495 
DC 200, 20 cs 0.955 19 20.50 -0.062 1.0 3.4 0.34 

200 cs 0.971 193 21.04 -0.065 0.94 3.7 0.35 
1000 cs 0.973 973 21.13 -0'061 0.94 3.8 0.37 

Air, 20 "C, 1 atm. 0.0012 0.0018 - - 0-57 0.25 - 

p = density, p = viscosity, y = surface tension, y' = thermal coefficient of surface 
tension, cz = coefficient of volume expansion, h = thermal conductivity, c, = heat 
capacity, c.g.s. units used throughout, temperature in "C. 

* N. 0. Young, 1955, Rev. Sci. Inst. 26, 561. Probable error on y' measurements is 
about 10 yo. 

TABLE 1. Fluid properties 

In  order to avoid free convective flow in the liquid sample, care was taken to 
keep the Rayleigh number, N, well below the critical value of about 2000.* 

Measurements were carried out on air bubbles in the organic liquid n-hexa- 
decane and in three Dow-Corning silicone oils of the DC 200 series. The viscosities 
of the three silicone oils differ widely while virtually all of their other specific 
properties are approximately the same. Specific parameters for each liquid are 
listed in table 1. 

* The Rayleigh number is defmed as N = (pgczb4/pv) ( d T / d z ) ,  where a, b, p and v 
represent the thermal coefficient of expansion, depth of the liquid, viscosity and thermal 
diffusivity, respectively (see Lin 1955). 
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The liquid n-hexadecane is easily contaminated by the introduction of very 
slight amounts of silicone oil, and was included for this reason. It was found that 
the introduction of very small amounts of silicone contaminant was sufficient to 
prevent completely the abnormal bubble behaviour under consideration, and this 
is taken as convincing evidence that the effect in question is a surface tension 
effect. On the other hand, it is known that it is very difficult to form monolayers 
on silicone, since virtually all contaminants remain in the bulk phase. In the 
present experiment it was found that the addition of relatively large amounts of 
contaminant to the silicone oils was ineffective in preventing abnormal motion. 

- 

0 022 

OOZ4r------ 

0 

Temperature gradient (OC/cm) 
FIGURE 2. Bubble diameter, 2R, vs temperature gradient necessary to hold bubble 
stationary. 0, DC 200, 20 cs; A, DC 200, 200 cs; , DC 200, 1000 cs. 

B = y’ = - 0.07 dynejcm; A = y‘ = - 0.06 dynejcm; C = y’ = - 0.08 dynejcm. 

The data for the three silicone oils is presented graphically in figure 2. The 
theory in the following section predicts that the value of K is 8 and that the 
function P of equation (1) is equal to unity. Thus, the straight lines represent 
equation (1) (with K = t and P = 1) for three different values of y’. There are 
three principle sources of error involved in this determination; first, anuncertainty 
of about 10 yo in the value of y’ ;  an estimated probable error of about 10 % in 
measuring bubble diameter (this error may perhaps be as large as 30-25 yo for 
the smallest bubbles); and finally, an error resulting from the ~f: lO,u/s uncertainty 
in residual velocity. This error is greatest for those bubbles whose normal 
(Stokesian) velocity is smallest; thus, the residual velocity errors are greatest for 
the smallest bubbles, and for the highest viscosity. 

23 Fluid Mech. 6 
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It will be seen that the data confirm the theory within the limits of experi- 
mental accuracy. The critical temperature gradient is proportional to the bubble 
radius and is independent of viscosity (which varies by a factor of fifty among the 
three oils). 

3. Derivation of the motion of a bubble in a vertical temperature 
gradient 

In  this section the flow field around a stationary undeformed bubble in a 
temperature field is derived. The analysis which follows is essentially a pertur- 
bation calculation, the unperturbed solution being one of no flow at all. It is then 
consistent with perturbation theory to neglect bubble deformations to the first 
order. 

The centre of the bubbleis taken as the origin of co-ordinates, and thezdirection 
(direction of gravity) as the polar axis. Let p and p be the density and viscosity, 
respectively, of the fluid outside the bubble (assumed to be infinite in extent) and 
let T be the temperature field outside the bubble. Corresponding quantities inside 
the bubble are denoted by the same symbols primed, e.g. p', p', T'. The linearized 
Navier-Stokes equations describing the flow are (Birkhoff 1950) 

pV2u = grad ( p  +pgz), div u = 0, (2) 

where u is the flow field outside the bubble and p is the pressure. Identical 
equations describe the flow field u' inside the bubble. Quadratic (inertial) terms 
have been neglected in equation (2); this is the approximation of 'creeping flow' 
and may be expected to be valid for small bubbles under the same conditions which 
make valid Stokes's law for a freely rising bubble (Lamb 1945). 

The energy equation governs the temperature distribution. If r is the thermal 
diffusivity of the liquid outside the bubble, this equation has the form, for the 
steady state (Jakob 1942) (u .grad) T = (TV~T.  

A similar equation holds inside the bubbles for T'. If (T is sufficiently large, it is 
consistent with the approximation of creeping flow to neglect forced convection 
in determining the temperature distribution. With this approximation, T be- 
comes a solution of Laplace's equation 

(3) 

V2T = 0. (4) 

The axially symmetric solutions for flow around and within a spherical bubble 
have been derived by Rybczynski (191 1) and by Hadamard (191 1). If u, and ue 
represent the radial and transverse components of the flow field outside the 
bubble, with ui and ui their counterparts within the bubble, the solution is 

ur = [(a/p) (r-l -R2r-3) + vo( 1 - R3r-3)] cos 8, ( 5 4  

U g  = - [(alp) (r- l+ R2r-3) + u0( 1 + ~B'F')] sin 19, (5b) 
ui = (a'/lOp') (r2 - B2) cos 8, ( 5 4  

ub = -(u'/lOp') (2r2-R2)sin8, ( 5 4  
p = (a/r2) cos I9 -pgr cos 8, ( 5 e )  

p' = a'r cos 8 - p'gr cos 8 + a;, (5f) 
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where a, a‘ and a; are constants to be determined by the boundary conditions, 
R is the bubble radius and vo is the velocity of rise of the bubble (later to be set 
equal to zero).* 

We must include with these results the appropriate solutions of equation (4) 

T = To + Tl(r + k / r2 )  cos 8, 
T = To + T,k‘r cos 8, 

(6a )  
( 6 b )  

where k, k’, To and Tl are constants also to be determined from the boundary 
conditions. 

FIGUFLE 3. Flow field within and around the bubble. 

The solutions expressed by equations (5) and ( 6 )  automatically satisfy condi- 
tions of regularity at the origin, and also satisfy the asymptotic conditions 

Furthermore, the constants in these solutions have been chosen so that a t  the 
bubble surface ur = ui = 0, since there can be no flow across the bubble surface. 

Additional boundary conditions must be applied at r = R to express (a )  con- 
tinuity of uo across the bubble surface, ( b )  continuity of shear stress across the 
surface, including that due to the thermal variation in surface tension, (c )  con- 
tinuity of normal stress across the surface, (d )  continuity of temperature across 
the surface, and ( e )  continuity of heat flux across the surface. These conditions 
are expressed by 

u - f ( O , O , w o ) ,  p - f  -pgz, T+-To+27,z, as 1.1 -+a. (7) 

u,(R, 8 )  = u w ,  O), 
[,d(au;jar- ub/r) -p(au,/ar - u,/r) - ~-lay/aB], = 0, 

rp’ - p + 2 , ~  au,./ar - 2,d au;lar - ZY/RI,,, = 0, 

T(R, 8 )  = T’(R, 8), 
[h aT/ar - hi a~’/ar],, = 0, 

(8b) 
( 8 c )  

( 8 4  

( 8 4  
* The solutions correctly describe the physical situation only when v,, = 0. 

23-2 
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where h and h' are the thermal conductivities outside and inside the bubble, 
respectively. When these five conditions are imposed on the solutions given by 
equations (7)  and (8 ) ,  the constants a, a', a,, k and E' may be eliminated, and the 
single relation which obtains among the remaining parameters is 

vo = ( 3 ~ )  [Py'RT, - (P -P') gR2@ +P')J ( 3 ~  + g~')-'* (9) 

where T, = 3TI/(3+h'/h). Setting v, = 0 in this equation gives the required 
relationship between the fluid parameters and d T / d z  for the stationary bubble. 
Putting p' = ,u' = h' = 0, which is correct to within a few percent, yields equa- 
tion (1) with K = Q and F = 1. The streamlines for the flow within and around the 
bubble are illustrated in figure 3. 

Equation (9), it may be noted, agrees with the law derived by Hadamard and 
Rybczynski when y' = 0. The term involving y' enters in exactly the same way 
as the slip coefficient applied by Epstein (1934) to Stokes's law. 

If in equation (9) we neglect unprimed quantities compared to primed ones, 
the case of the droplet falling in a gas results. It is seen that, by neglecting h and 
,u in equation (9), the term involving y' disappears and Stokes's law is obtained. 
Thus the effect is extremely small for the case of droplets falling in a gas unless the 
droplet radius is of the order of 3,uy'hT,/,u'h'p'g. It is possible that this situation is 
realized in the case of burning fuel droplets. 

This work was supported in part by The Engineering Research and Develop- 
ment Laboratory, Fort Belvoir, Virginia. 
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